Z-Selective and Syndioselective Ring-Opening Metathesis Polymerization (ROMP) Initiated by MonoAryloxidePyrrolide (MAP) Catalysts.
نویسندگان
چکیده
We report the Z-selective and syndioselective polymerization of 2,3-bis(trifluoromethyl)bicyclo[2.2.1]hepta-2,5-diene (NBDF6) and 3-methyl-3-phenylcyclopropene (MPCP) by monoaryloxide monopyrrolide imido alkylidene (MAP) catalysts of Mo. The mechanism of polymerization with syn-Mo(NAd)(CHCMe(2)Ph)(Pyr)(OHIPT) (1; Ad = 1-adamantyl, OHIPT = O-2,6-(2,4,6-i-Pr(3)C(6)H(2))(2)C(6)H(3)) as the initiator is proposed to consist of addition of monomer to the syn initiator to yield a syn first insertion product and propagation via syn insertion products. In contrast, the mechanism of polymerization with syn-Mo(NAr)(CHCMe(2)Ph)(Pyr)(OTPP) (4; Ar = 2,6-i-Pr(2)C(6)H(3), OTPP = 2,3,5,6-Ph(4)C(6)H) as the initiator at -78 °C consists of addition of monomer to the syn initiator to yield an anti first insertion product and propagation via anti insertion products. Polymerizations of NBDF6 and MPCP at room temperature initiated by 4 led to polymers without a regular structure. We propose that the syndiotacticity of cis polymers is the consequence of the required inversion at the metal center with each insertion of monomer, i.e., stereogenic metal control of the polymer structure. We also propose that the two mechanisms for forming cis,syndiotactic polymers arise as a consequence of the relative steric bulk of the imido and phenoxide ligands.
منابع مشابه
Ruthenium Olefin Metathesis Catalysts Bearing Carbohydrate-Based N-Heterocyclic Carbenes.
Ru-based olefin metathesis catalysts containing carbohydrate-derived NHCs from glucose and galactose were synthesized and characterized by NMR spectroscopy. 2D-NMR spectroscopy revealed the presence of Ru-C (benzylidene) rotamers at RT and the rate of rotation was measured using magnetization transfer and VT-NMR spectroscopy. The catalysts were found to be effective at ring-opening metathesis p...
متن کاملChapter 5: Ring-Opening Metathesis Polymerization with an Ultra- fast-initiating Ruthenium Catalyst
Ring-opening metathesis polymerization (ROMP) is one of the most widely used polymerizations. With the development of well-defined catalysts, such as (t-BuO)2(ArN)Mo=CH(t-Bu) (1), Cl2(PCy3)2Ru=CHPh (2), and Cl2(PCy3)(IMesH2)Ru=CHPh (3), more controlled polymer structures have been obtained by either living polymerization or chain transfer induced polymerization. However, these catalysts suffer ...
متن کاملRecent advances in ring-opening metathesis polymerization, and application to synthesis of functional materials
This article reviews the development of catalysts for ring-opening metathesis polymerization (ROMP), synthesis of polymers bearing amino acids and peptides by ROMP of functionalized norbornenes, formation of aggregates and micelles, and applications of the polymers to medical materials. It also describes the control of monomer unit sequences, that is, living polymerization to synthesize block c...
متن کاملInvestigations into Apopinene as a Biorenewable Monomer for Ring- Opening Metathesis Polymerization
The ring-opening metathesis polymerization (ROMP) of apopinene is reported. We find that apopinene reacts with Rubased metathesis catalysts to provide an all trans-polymer with a polydispersity index (PDI) as low as 1.6 and molecular weights in the 1100 to 15 600 g·mol−1 range (9−127 monomer units). Because apopinene is readily prepared in one-step from myrtenal or two-steps from α-pinene, both...
متن کاملSynthesis of polymer dielectric layers for organic thin film transistors via surface-initiated ring-opening metathesis polymerization.
The use of surface-initiated ring-opening metathesis polymerization (SI-ROMP) for producing polymer dielectric layers is reported. Surface tethering of the catalyst to Au or Si/SiO2 surfaces is accomplished via self-assembled monolayers of thiols or silanes containing reactive olefins. Subsequent SI-ROMP of norbornene can be conducted under mild conditions. Pentacene semiconducting layers and g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Macromolecules
دوره 43 18 شماره
صفحات -
تاریخ انتشار 2010